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J. Phys. A: Math. Gen. 14 (1981) 2911-2915. Printed in Great Britain 

Path-integral forms for the Klein-Gordon wavefunction? 

Frank G Krausz 
Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA 

Received 23 January 1981, in final form 14 April 1981 

Abstract. We discuss how to define the path integral 1 %  eis when S is the Klein-Gordon 
action and show that it is possible to use this form as a Euclidean-space wavefunction. 

1. Introduction 

There are two path-integral forms for the Klein-Gordon wavefunction: the intuitively 
obvious 

K ( x ) = j 9 x e i s = j 9 x e x p { i [ d u [ m ( - - )  dx @ dx +eA,dxyI] (1) 
du du du 

and Feynman's form (Feynman 1950), 
m 

'P(x) = [ duo exp(-im2uo) 
0 du 

These are known to be formally equivalent, by an application of the Fade'ev-Popov 
trick: one observes the exponent of K ( x )  to be reparametrisation invariant and, roughly 
speaking, divides out the volume of the reparametrisation group (Bardacki and Samuel 
1978). 

But K ( x )  is not defined a priori, not being of the usual Gaussian type. We discuss the 
defining of this integral and show that a sensible choice of definitions preserves the 
equality with '-P(x), at least in Euclidean space. We show that neither expression is 
useful in Minkowski space. 

2. Defining K ( x )  

The natural reparametrisation invariance of relativistic actions alluded to above will 
prevent us from following the usual procedure in defining our path integral. If U is an 
arbitrary parameter, we obtain, for A,  = 0, 
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where E =(range of u ) / N  and K(E)  is a normalising factor. But since we have a 
reparametrisation-invariant action, E has disappeared from the exponent. Whatever 
procedure we try to use to make the exponential damp for large values of / x i  - - X ~ - ~ I ,  
there is nothing to set the scale of the damping, so no N(E)  can possibly be chosen to 
make the integral finite. 

The obvious cure for this disease is to enforce a specific parametrisation: for 
example, if we parametrise by the time coordinate, expression (3) becomes (excluding 
tachyonic paths and letting vi 3 xi  -xi-l,  x =xN -xg) 

But attempts based on the use of time as a parameter are doomed to fail. Following 
Feynman's procedure for the Schrodinger equation (Feynman 1948), if x k  - x: = t, 

Expanding both sides in powers of 6t gives a PDF with a aK/at term-certainly not the 
Klein-Gordon equation. Of course, had we been so foolish as to do either the 
non-relativistic or the relativistic case with, say, the z coordinate as a parameter, we 
would have obtained, in a similar way, a X / a z  term. The reason for the impropriety of 
such a parametrisation is that one does not in general expect the other coordinates to be 
single-valued functions of z .  That a t parametrisation fails to give the Klein-Gordon 
equation implies that, if (3) is to hold for arbitrary parametrisation, x ( t )  is ill defined in 
the relativistic case: one must sum over paths going back and forth in time, (The 
presence of the a / a t  term in the Dirac equation is perhaps related to the fact that for 
fermions, particles and antiparticles are necessarily distinct, .so simply treating them 
together in this way is wrong.) 

A better choice of parameters is the proper time, s. But Feynman's prescription for 
a sum-over-histories calls for a fixed parametric interval (in the case of the Schrodinger 
equation, the time interval), which would constrain us to summing only over paths of a 
fixed four-length 1. Since we want to include paths of different four-lengths in our sum, 
we will have to integrate separately over 1. This will have the advantage of eliminating 
the d/ds term from the PDE. A difficulty with this choice is that, unless one excludes 
paths with light-like segments (which, because of the zitterbewegung, seems wrong) it 
would appear that this parametrisation too is ill defined, except in Euclidean space- 
time. 

But if we look at equation (3) in this parametrisation (for the case of A = 0) we 
obtain 

Restricting lqi/ = l /N  as we do here, or damping lqil in some other version of equation 
(3), places no constraint on J' d3vi if we are in Minkowski space, so, again, no N(E)  can 
make the integral finite. It is therefore always necessary to let (v i ]  be the Euclidean 
length (and set L = a). 
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3. Deriving Feynman's form 

Let us proceed to derive equation (2), taking as our starting point 

where the expression 

represents our choice of parametrisation and Iy I E  = the Euclidean length of y. Using the 
fact that IdxF/dslE = 1 we write, somewhat arbitrarily, 

m dx" m .=Io dle""2[9xexp[i( [o'l-l-i 2 ds +eAK)ds]'8( ds I1$1-s)' 

Now we use a Gaussian form for our 'Dirac delta': 
m 2 dl  eim'12 [ I7 dxi(s) exp[ i[ y m (xi - x ; - l )  

E 
V+O 

Define 2 ~ / 7 7  = 6, and take limits so that 6 + 0. 

where 

= ( E ) / ( . r r d ' / 2 ,  

which we may do since, having already insisted that E / T  + 0, we may with no loss of 
generality take, say, 77 = E ~ " .  So, finally, 

2 dl ei(m-2S)'/2 [ 9 x  exp{ i 6' ds[ 7( m - i t  ~3 dx + e A F K ] ) .  
ds 
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We can make this resemble equation (2), as promised, by a change of variables. Let 
uo = I/m, U = s/m, and absorb an extra l / m  in the measure 9 x :  

r e 2  

K = lim J duo exp[i(m2 - 2&m)u0/2] 
e-0 0 

x 9 x  exp( i loLio [ (7) 1-i&/m (z) dx” * + eA, s] 1. 
We will see below that this differs from equation ( 2 )  mainly in an inessential sign 
convention. 

4. Feynman’s derivation of the Klein-Gordon equation 

Define a function 4(x” ,  U )  by 
.m 

K = lim du exp[i(m2-i7)u/2]~(x,  U ) .  
r l+o Jo 

If we look at the path integral form of 4 and neglect the i&/2m term, we see that it must 
satisfy a Schrodinger-like equation with U as the time: 

ia4laz.t = $(i a/ax, -A,)2q5. (14) 

Feynman’s starting point is to define 4 to satisfy (14) (but with a relative minus sign 
between the RHS and LHS). It is amusing to notice that the usual derivation of (14) fails 
in Minkowski space. One has that 

4 ( x ”  -Sx”, u )  exp ( iSu [($)’+eA.,  ”I I d4(Sx,). 

The next step is to expand both sides in Su and compare coefficients, using the Gaussian 
damping to obtain Sx” - ( 8 ~ ) ” ~ .  But in fact the damping only forces ( 6 ~ ’ ” ) ~  - Su, which 
in Minkowski space does not imply what we need. 

Feynman then asserts that we project out the eigenfunctions 4 (m2 ,  x, U )  satisfying 

a4(m2)/au = -i im24(m2) (15) 

by writing 
e2 

exp(tim2u)4(m2) = K = J exp(iim2u)4(x, U )  du. (16) 

(Feynman’s convention is to project out 4(-m2).) Equations (16) and (14) (with either 
sign convention) imply the Klein-Gordon equation. Note that it does us no good to try 
to take a Fourier transform of 4 since 4 (x, U )  = 0 for U < 0. The iq in equation (13) now 
appears as the usual real part of the exponent in a Laplace transform. 

0 

5. Discussion 

It has been emphasised (notably by Wu and Yang (1975)) that in gauge theories the 
quanitity 4 = P exp(ie d, dx,) is the physically relevant one. We would like to point 
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out that our construction legitimises the idea that in general exp(iS) is the ‘amplitude for 
a path’ for Klein-Gordon particles, and suggests that vector potentials, for which S is 
reparametrisation invariant, are the natural ones. It is remarkable to us how the 
statement that the wavefunction is 9 x  eis survives redefinition, and we wonder if an 
extension to the Dirac equation might not after all exist. (The free Dirac particle in two 
dimensions is discussed in Feynman and Hibbs (1965).) 
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